Solvent accessibility of native and hydrolyzed human complement protein 3 analyzed by hydrogen/deuterium exchange and mass spectrometry.

نویسندگان

  • Michael S Winters
  • Daniel S Spellman
  • John D Lambris
چکیده

Complement protein C3 is a 187-kDa (1641-aa) protein that plays a key role in complement activation and immune responses. Its hydrolyzed form, C3(H2O), is responsible for the initiation of the activation of alternative complement pathway. Previous analyses using mAbs, anilinonaphthalenesulfonate dyes, and functional studies have suggested that C3 is conformationally different from C3(H2O). We have used amide hydrogen/deuterium exchange and MALDI-TOF mass spectrometry to identify and localize structural differences between native C3 and C3(H2O). Both proteins were incubated in D2O for varying amounts of time, digested with pepsin, and then subjected to mass-spectrometric analysis. Of 111 C3 peptides identified in the MALDI-TOF analysis, 31 had well-resolved isotopic mass envelopes in both C3 and C3(H2O) spectra. Following the conversion of native C3 to C3(H2O), 17 of these 31 peptides exhibited a change in deuterium incorporation, suggesting a conformational change in these regions. Among the identified peptides, hydrogen/deuterium exchange data were obtained for peptides 944-967, 1211-1228, 1211-1231, 1259-1270, 1259-1273, 1295-1318, and 1319-1330, which span the factor H binding site on C3d and factor I cleavage sites, and peptides 1034-1048, 1049-1058, 1069-1080, 1130-1143, 1130-1145, 1211-1228, 1211-1231, 1259-1270, and 1259-1273, spanning 30% of the C3d region of C3. Our results suggest that hydrolysis may produce a looser (more open) structure in the C3d region, in which some of the changes affect the conversion of helical segments into coil segments facilitating interactions with factors I and H. This study represents the first detailed study mapping the regions of C3 involved in conformational transition when hydrolyzed to C3(H2O).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ligand-induced conformational changes in the acetylcholine-binding protein analyzed by hydrogen-deuterium exchange mass spectrometry.

Recent x-ray crystallographic studies of the acetylcholine-binding protein (AChBP) suggest that loop C, found at the circumference of the pentameric molecule, shows distinctive conformational changes upon antagonist and agonist occupation. We have employed hydrogen-deuterium exchange mass spectrometry to examine the influence of bound ligands on solvent exposure of AChBP. Quantitative measureme...

متن کامل

Dynamic structural changes during complement C3 activation analyzed by hydrogen/deuterium exchange mass spectrometry.

Proteolytic cleavage of component C3 to C3b is a central step in the activation of complement. Whereas C3 is largely biologically inactive, C3b is directly involved in various complement activities. While the recently described crystal structures of C3 and C3b provide a molecular basis of complement activation, they do not reflect the dynamic changes that occur in solution. In addition, the ava...

متن کامل

Identification of protein-protein interfaces by decreased amide proton solvent accessibility.

Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry was used to identify peptic fragments from protein complexes that retained deuterium under hydrogen exchange conditions due to decreased solvent accessibility at the interface of the complex. Short deuteration times allowed preferential labeling of rapidly exchanging surface amides so that primarily solvent accessibili...

متن کامل

On-tissue Direct Monitoring of Global Hydrogen/Deuterium Exchange by MALDI Mass Spectrometry: Tissue Deuterium Exchange Mass Spectrometry (TDXMS).

Hydrogen/deuterium exchange mass spectrometric (H/DXMS) methods for protein structural analysis are conventionally performed in solution. We present Tissue Deuterium Exchange Mass Spectrometry (TDXMS), a method to directly monitor deuterium uptake on tissue, as a means to better approximate the deuterium exchange behavior of proteins in their native microenvironment. Using this method, a differ...

متن کامل

Probing protein ensemble rigidity and hydrogen-deuterium exchange.

Protein rigidity and flexibility can be analyzed accurately and efficiently using the program floppy inclusion and rigid substructure topography (FIRST). Previous studies using FIRST were designed to analyze the rigidity and flexibility of proteins using a single static (snapshot) structure. It is however well known that proteins can undergo spontaneous sub-molecular unfolding and refolding, or...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of immunology

دوره 174 6  شماره 

صفحات  -

تاریخ انتشار 2005